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Abstract 

The concept of coupled fixed point 𝑇: 𝑋2 → 𝑋 has attracted several researches in recent time, both in 

partially ordered metric spaces and in cone metric spaces.In this work we introduce the notion of 

stability definition of coupled fixed point iteration procedures𝑠𝑛+1 = 𝑇(𝑠𝑛 , 𝑡𝑛), 𝑡𝑛+1 = 𝑇(𝑡𝑛, 𝑠𝑛), 𝑛 ≥
0, with {(𝑠𝑛 , 𝑡𝑛)} ⊂ 𝑋2, for 𝑠0, 𝑡0 ∈ 𝑋2 in partially ordered set (𝑋, ≤) and establish stability results for 

mixed monotone mappings satisfying various contractive conditions. Our results extend and complete 

some existing results in the literature. 
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Introduction 

It is well known that the Banach contraction principle plays an important role in nonlinear analysis. It is 

often used to solve integral equation, differential equation and periodic boundary value problems. Over the 

past decades, the famous principle has been generalized in several directions. Guo and Lakshmikantham 

(2009) introduced the concept of the coupled fixed point. Consequently, Bhaskar and Lakchmikantham 

(2006) required the coupled fixed-point theorem in partially ordered metric spaces. Lakchmikantham and 

Ćirić (2009) presented the mixed 𝑔 −monotone mapping in the partially ordered metric spaces for the first 

place. Later, Borcut and Berinde (2012) generalized their result and got the tripled coincidence theorem. In 

order to compensate the restriction in common metric spaces, some experts have popularized the Banach 

contraction principle on more generalized metric spaces. The existence of a fixed point for contraction type 

mappings in partially ordered metric spaces has been considered (Agarwal et al., 2008) and (Nieto and 

López, 2005 & 2007). In Van Loung & Xuan Thuan (2011) and Bhaskar and Lakchmikantham (2006), the 

authors proved some coupled fixed-point theorems and noted their results can be used to investigate a large 

class of problems and have discussed the existence and uniqueness of solution for a periodic boundary value 

problem and a nonlinear integral equation. Samet and Vetro (2010) introduced the notion of fixed point of 

N-order as a natural extension of coupled fixed point and established some new coupled fixed-point 

theorems in complete metric spaces. Very recently, Berinde and Pacurar (2015) use a constructive approach 

to coupled fixed-point theorems in metric spaces. Some work on fixed points, and the stability of a fixed 

point iterative procedures was first studied by Ostrowski (1967) in the case of Banach contraction mappings 

and this subject was later developed for certain contractive definitions by several authors, Harder and Hicks 

(1988), Rhoades (1990 & 1993), Osilike (1996-1995), Osilike and Udomene (1995), Olatinwo (2010), 

Imoru and Olatinwo (2006), Timis (2014), Imoru, Olatinwo and Owojori (2006). Our aim in this work is 

to show the concept of stability for coupled fixed point iteration procedures and to establish stability results 

for mixed monotone mappings satisfying various contractive conditions by extension from constructive 

approach to coupled fixed point theorems in metric spaces by Berinde and Pacurar (2015). 

Preliminaries 

Definition 1: Let 𝑋 be a non-empty set. A mapping 𝑑: 𝑋 × 𝑋 → ℝ (the set of reals) is said to be a metric 

(or distance function) if and only if 𝑑 satisfies the following axioms: 

i. 𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑋, 
ii. 𝑑(𝑥, 𝑦) = 0 if and only 𝑥 = 𝑦, 
iii. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋, 
iv. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

If 𝑑 is metric for 𝑋, then the ordered pair (𝑋, 𝑑) is called a metric space and 𝑑(𝑥, 𝑦) is called the distance 

between 𝑥 and 𝑦. 
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Definition 2: (Agarwal et al., 2008)A self-mapping 𝑇 of a metric space (𝑋, 𝑑) is said to be Lipschitzian if 

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ≥ 0 

𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝛼𝑑(𝑥, 𝑦) 

𝑇 is said to be contraction on 𝛼 if 𝛼 ∈ [0,1) and non-expansive if 𝛼 = 1. 

Definition 3: Let 𝑋 be a nonempty setand 𝑑 a metric on 𝑋 so that the pair (𝑋, 𝑑) is a Cauchy space and 

let {𝑥𝑛} be a sequence of points in 𝑋, then it is said to be a Cauchy sequence in 𝑋 if and only if for every 

𝜖 > 0 there exists a positive integer 𝑁 such that, 𝑚, 𝑛 ≥ 𝑁 ⇒ 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜖. 

Definition 4 (Matthews, 1994) A partial metric on a nonempty set 𝑋is a function 𝑑: 𝑋2 → ℝ+ such that 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋: 

i. 𝑥 = 𝑦 ⇔ 𝑑(𝑥, 𝑥) = 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑦), 
ii. 𝑑(𝑥, 𝑥) ≤ 𝑑(𝑥, 𝑦), 
iii. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 
iv. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) − 𝑑(𝑧, 𝑧) 

A partial metric space is a pair (𝑋, 𝑑) such that 𝑋 is nonempty set and 𝑑 is a partial metric on 𝑋. 

Definition 5: (Agarwal et al., 2008)Let (𝑋, ≤) be a partially ordered set and 𝑑 be a metric on 𝑋 such that 

(𝑋, 𝑑) is a complete metric space. Then, the product space 𝑋2 has the following partial order 

(𝑞, 𝑟) ≤ (𝑠, 𝑡) ⇔ 𝑠 ≥ 𝑞, 𝑡 ≤ 𝑟;     (𝑞, 𝑟), (𝑠, 𝑡) ∈ 𝑋2 

Definition 6: (Berinde and Parcurar, 2015) Let (𝑋, ≤) be a partially ordered set and  𝑇: 𝑋2 → 𝑋 be a 

mapping. We say that 𝑇 has a mixed monotone property if 𝑇(𝑠, 𝑡) is monotone nondecreasing in 𝑠, and 

monotone nonincreasing in 𝑡, that is for any 𝑠, 𝑡 ∈ 𝑋, 

𝑠1 ≤ 𝑠2 ⇒ 𝑇(𝑠1, 𝑡) ≤ 𝑇(𝑠2, 𝑡),     𝑠1, 𝑠2 ∈ 𝑋, 
𝑡1 ≤ 𝑡2 ⇒ 𝑇(𝑠, 𝑡1) ≥ 𝑇(𝑠, 𝑡2),     𝑡1, 𝑡2 ∈ 𝑋, 

Definition 7: (Berinde and Parcurar, 2015) An element (𝑠, 𝑡) ∈ 𝑋2 is called coupled fixed point of 

𝑇: 𝑋2 → 𝑋, if 

𝑇(𝑠, 𝑡) = 𝑠, 𝑇(𝑡, 𝑠) = 𝑡. 

Definition 8: (Berinde and Parcurar, 2015) A mapping 𝑇: 𝑋2 → 𝑋 is said to be (𝜅, 𝜇)-contraction if and 

only if there exist two constants 𝜅 ≥ 0, 𝜇 ≥ 0, 𝜅 + 𝜇 < 1, such that ∀ 𝑠, 𝑡, 𝑞, 𝑟 ∈ 𝑋, 

𝑑(𝑇(𝑠, 𝑡), 𝑇(𝑞, 𝑟)) ≤ 𝜅𝑑(𝑠, 𝑞) + 𝜇𝑑(𝑡, 𝑟) 

In order to prove our main stability result in this work, we give the followings: 

Definition 9: A mapping 𝑇: 𝑋2 → 𝑋 is said to be (𝜅, 𝜇)-contraction if and only if there exist two 

constants 𝜅 ≥ 0, 𝜇 ≥ 0, 𝜅 + 𝜇 < 1, such that ∀ 𝑠, 𝑡, 𝑞, 𝑟 ∈ 𝑋, 

𝑑(𝑇(𝑠, 𝑡), 𝑇(𝑞, 𝑟)) ≤ 𝜅𝑑(𝑠, 𝑞) + 𝜇𝑑(𝑡, 𝑟)                                                              (1) 

From (1) above, we introduce some new contractive conditions. 
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Let (𝑋, 𝑑) be a metric space. For a map 𝑇: 𝑋2 → 𝑋 there exist 𝛼1, 𝛼2, 𝛽1, 𝛽2 ≥ 0, with 𝛼1 + 𝛼2 < 1, 𝛽1 +
𝛽2 < 1, such that ∀𝑠, 𝑡, 𝑞, 𝑟 ∈ 𝑋 we introduce the following definitions of contractive conditions: 

i. 𝑑(𝑇(𝑠, 𝑡), 𝑇(𝑞, 𝑟)) ≤ 𝛼1𝑑(𝑇(𝑠, 𝑡), 𝑠) + 𝛽1𝑑(𝑇(𝑞, 𝑟), 𝑞);                           (2) 

𝑑(𝑇(𝑡, 𝑠), 𝑇(𝑟, 𝑞)) ≤ 𝛼2𝑑(𝑇(𝑡, 𝑠), 𝑡) + 𝛽2𝑑(𝑇(𝑟, 𝑞), 𝑟);                           (3) 

ii. 𝑑(𝑇(𝑠, 𝑡), 𝑇(𝑞, 𝑟)) ≤ 𝛼1𝑑(𝑇(𝑠, 𝑡), 𝑞) + 𝛽1𝑑(𝑇(𝑞, 𝑟), 𝑠);                           (4) 

𝑑(𝑇(𝑡, 𝑠), 𝑇(𝑟, 𝑞)) ≤ 𝛼2𝑑(𝑇(𝑡, 𝑠), 𝑟) + 𝛽2𝑑(𝑇(𝑟, 𝑞), 𝑡);                           (5) 

Let 𝐴, 𝐵 ∈ 𝑀(𝑚,𝑛)(ℝ) be two matrices. We write 𝐴 ≤ 𝐵, if 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗 for all 𝑖 = 1, 𝑚,̅̅ ̅̅ ̅̅  𝑗 = 1, 𝑛̅̅ ̅̅̅. 

Lemma 1: Let {𝑎𝑛}, {𝑏𝑛} be sequences of non-negative numbers and ℎ be a constant, such that 0 ≤ ℎ <
1 and 𝑎𝑛+1 ≤ ℎ𝑎𝑛 + 𝑏𝑛, 𝑛 ≥ 0. If lim

𝑛→∞
𝑏𝑛 = 0, then lim

𝑛→∞
𝑎𝑛 = 0. 

We also give the following result which extends Lemma 1 to vector sequences, where inequalities 

between vectors mean inequality on its elements. 

Lemma 2: Let {𝑞𝑛}, {𝑟𝑛} be sequences of nonnegative real numbers, consider a matrix 𝐴 ∈ 𝑀(2,2)(ℝ) 

with nonnegative elements, such that 

(
𝑞𝑛+1

𝑟𝑛+1
) ≤ 𝐴. (

𝑞𝑛

𝑟𝑛
) + (

𝛿𝑛

𝛾𝑛
) ,   𝑛 ≥ 0,                                                                 (6) 

with 

i. lim
𝑛→∞

𝐴𝑛 = 02, 

ii. ∑ 𝛿𝑛
∞
𝑘=0 < ∞ and ∑ 𝛾𝑛

∞
𝑘=0 < ∞. 

If lim
𝑛→∞

(
𝛿𝑛

𝛾𝑛
) = (

0
0

), then lim
𝑛→∞

(
𝑞𝑛

𝑟𝑛
) = (

0
0

). 

Proof: 

For 𝐴 = 0 ∈ 𝑀(2,2), we shall rewrite (6) with 𝑛 = 𝑘 to obtain the following inequalities for 𝑘 =

0,1,2, … , 𝑛. 

𝐴𝑡 𝑘 = 0:          (
𝑞1

𝑟1
) ≤ 𝐴 ∙ (

𝑞0

𝑟0
) + (

𝛿0

𝛾0
)                                                                                 (7) 

𝐴𝑡 𝑘 = 1:          (
𝑞2

𝑟2
) ≤ 𝐴 ∙ (

𝑞1

𝑟1
) + (

𝛿1

𝛾1
)                                                                                 (8) 

𝐴𝑡 𝑘 = 2:          (
𝑞3

𝑟3
) ≤ 𝐴 ∙ (

𝑞2

𝑟2
) + (

𝛿2

𝛾2
)                                                                                 (9) 

⋮    

𝐴𝑡 𝑘 = 𝑛 − 1:          (
𝑞𝑛

𝑟𝑛
) ≤ 𝐴 ∙ (

𝑞𝑛−1

𝑟𝑛−1
) + (

𝛿𝑛−1

𝛾𝑛−1
)                                                             (10) 

𝐴𝑡 𝑘 = 𝑛:          (
𝑞𝑛+1

𝑟𝑛+1
) ≤ 𝐴 ∙ (

𝑞𝑛

𝑟𝑛
) + (

𝛿𝑛

𝛾𝑛
)                                                                         (11) 

Now, the sum of the inequalities is as follows: 

Since, 

If lim
𝑛→∞

(
𝛿𝑛

𝛾𝑛
) = (

0
0

), then lim
𝑛→∞

(
𝑞𝑛

𝑟𝑛
) = (

0
0

), 

we obtain 
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(
𝑞𝑛+1

𝑟𝑛+1
) ≤ 𝐴𝑛+1 ∙ (

𝑞0

𝑟0
) + ∑ 𝐴𝑘 ∙ (

𝛿𝑛−𝑘

𝛾𝑛−𝑘
) .

𝑛

𝑘=0

                                                             (12) 

From eqn. 6(ii), it follows that the sequence of partial sums {Δ𝑛} and {Γ𝑛}, given by Δ𝑛 = 𝛿0 + 𝛿1 + ⋯ +
𝛿𝑛 and Γ𝑛 = 𝛾0 + 𝛾1 + ⋯ + 𝛾𝑛, for 𝑛 ≥ 0, converges respectively to some Δ𝑛 ≥ 0 and Γ𝑛 ≥ 0 and hence 

they are bounded. 

Let 𝑀 > 0 be such that (
Δ𝑛

Γ𝑛
) ≤ 𝑀. (

1
1

),    ∀   𝑛 ≥ 0.By eqn. 6(i) we have that ∀  𝑒 > 0, there exists 𝑁 =

𝑁(𝑒) such that 𝐴𝑛 ≤
𝑒

2𝑀
∙ 𝐼2,   ∀   𝑛 ≥ 𝑁, 𝑀 > 0. 

We can write 

∑ 𝐴𝑘

𝑛

𝑘=0

(
𝛿𝑛−𝑘

𝛾𝑛−𝑘
) = 𝐴𝑛 (

𝛿0

𝛾0
) + ⋯ + 𝐴𝑁 (

𝛿𝑛−𝑁

𝛾𝑛−𝑁
) + 𝐴𝑁−1 (

𝛿𝑛−𝑁+1

𝛾𝑛−𝑁+1
) + ⋯ + 𝐼2 (

𝛿𝑛

𝛾𝑛
) 

but 

𝐴𝑛 (
𝛿0

𝛾0
) + ⋯ + 𝐴𝑁 (

𝛿𝑛−𝑁

𝛾𝑛−𝑁
) ≤

𝑒

2𝑀
∙ 𝐼2 [(

𝛿0

𝛾0
) + ⋯ + (

𝛿𝑛−𝑁

𝛾𝑛−𝑁
)] 

=
𝑒

2𝑀
∙ 𝐼2 (

∆𝑛−𝑁

Γ𝑛−𝑁
) ≤

𝑒

2𝑀
∙ 𝐼2 ∙ 𝑀 (

1
1

) =
𝑒

2
(

1
1

) 

for all 𝑛 ≥ 𝑁. Similarly, if we denote 𝐴′ = 𝑚𝑎𝑥{𝐼2, 𝐴, ⋯ , 𝐴𝑁−1}, we obtain 

𝐴𝑁−1 (
𝛿𝑛−𝑁+1

𝛾𝑛−𝑁+1
) + ⋯ + 𝐼2 (

𝛿𝑛

𝛾𝑛
) ≤ 𝐴′ [(

𝛿𝑛−𝑁+1

𝛾𝑛−𝑁+1
) + ⋯ + (

𝛿𝑛

𝛾𝑛
)] = 𝐴′ (

∆𝑛 − ∆𝑛−𝑁

Γ𝑛 − Γ𝑛−𝑁
) 

As 𝑁 is fixed, then lim
𝑛→∞

∆𝑛 = lim
𝑛→∞

∆𝑛−𝑁 = ∆, and lim
𝑛→∞

Γ𝑛 = lim
𝑛→∞

Γ𝑛−𝑁 = Γ, 

which shows that there exists a positive integer 𝐾 such that 

𝐴′ (
∆𝑛 − ∆𝑛−𝑁

Γ𝑛 − Γ𝑛−𝑁
) <

𝑒

2
(

1
1

),   ∀  𝑛 ≥ 𝐾. 

Now, for 𝑚 = 𝑚𝑎𝑥{𝐾, 𝑁}, we get 

𝐴𝑛 (
𝛿0

𝛾0
) + ⋯ + 𝐼2 (

𝛿𝑛

𝛾𝑛
) < 𝑒 (

1
1

),   ∀  𝑛 ≥ 𝑛, 

and therefore, 

lim
𝑛→∞

∑ 𝐴𝑘

𝑛

𝑘=0

(
𝛿𝑛−𝑘

𝛾𝑛−𝑘
) = 0. 

Now, by letting limit in (12), and lim
𝑛→∞

𝐴𝑛 = 0, we obtain 

lim
𝑛→∞

(
𝑞𝑛

𝑟𝑛
) = (

0
0

), 

as required. 
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Stability Results 

Let (𝑋, 𝑑) be a metric space and 𝑇: 𝑋2 → 𝑋 a mapping. For (𝑠0, 𝑡0) ∈ 𝑋2 the sequence {(𝑠𝑛, 𝑡𝑛)} ⊂ 𝑋2 

defined by 

𝑠𝑛+1 = 𝑇(𝑠𝑛, 𝑡𝑛),   𝑡𝑛+1 = 𝑇(𝑡𝑛, 𝑠𝑛)                                                        (13) 

for 𝑛 = 0,1,2, …, is said to be coupled fixed point iterative procedures. 

We give the following stability definition with respect to 𝑇, in metric spaces, relative to tripled fixed 

points iterative procedures. 

Definition 10: Let (𝑋, 𝑑) be a complete metric space and 𝐹𝑖𝑥𝑐(𝑇) = {(𝑠∗, 𝑡∗) ∈ 𝑋2|𝑇(𝑠∗, 𝑡∗) =
𝑠∗, 𝑇(𝑡∗, 𝑠∗) = 𝑡∗} is the set of coupled fixed points of 𝑇. 

Let {(𝑠𝑛, 𝑡𝑛)} ⊂ 𝑋2 be the sequence generated by the iterative procedure defined by (13), where (𝑠0, 𝑡0) ∈
𝑋2 is the initial value, which converges to a coupled fixed point (𝑠∗, 𝑡∗) of 𝑇. 

Let (𝑞𝑛, 𝑟𝑛) ⊂ 𝑋2 be an arbitrary sequence. For all 𝑛 = 0,1,2, …, we set 

𝛿𝑛 = 𝑑(𝑞𝑛+1, 𝑇(𝑞𝑛, 𝑟𝑛)), 𝛾𝑛 = 𝑑(𝑟𝑛+1, 𝑇(𝑟𝑛, 𝑞𝑛)). 

Then, the coupled fixed-point iterative procedure defined by (13) is 𝑇 −stable or stable with respect to 𝑇, 
if and only if 

lim
𝑛→∞

(𝛿𝑛, 𝛾𝑛) = 0ℝ2 

⟹ lim
𝑛→∞

(𝑞𝑛, 𝑟𝑛) = (𝑠∗, 𝑡∗). 

Theorem 1: Let (𝑋, ≤) be a partially ordered set. Suppose that there exists a metric 𝑑 on 𝑋 such that 

(𝑋, 𝑑) is a complete metric space. Let 𝑇: 𝑋2 → 𝑋 be a continuous mapping having a mixed monotone 

property on 𝑋 and satisfying the contraction (1). 

If there exists 𝑠0, 𝑡0 ∈ 𝑋 such that 

𝑠0 ≤ 𝑇(𝑠0,𝑡0) 𝑎𝑛𝑑 𝑡0 ≥ 𝑇(𝑡0, 𝑠0) 

then, there exist 𝑠∗, 𝑡∗ ∈ 𝑋 such that 

𝑠∗ = 𝑇(𝑠∗, 𝑡∗) and 𝑡∗ = 𝑇(𝑡∗, 𝑠∗). 

Assume that for every (𝑠, 𝑡), (𝑠1, 𝑡1) ∈ 𝑋2, then there exists (𝑞, 𝑟), (𝑞1, 𝑟1) ∈ 𝑋2 that is comparable to 

(𝑠, 𝑡) and (𝑠1, 𝑡1). For (𝑠0, 𝑡0) ∈ 𝑋2, let {(𝑠𝑛, 𝑡𝑛)} ⊂ 𝑋2 be the fixed point iterative procedure defined by 

(13). Then, the coupled fixed-point iterative procedure is stable with respect to 𝑇. 

Proof: 

From the suppositions of the hypothesis, Berinde and Borcut (2012) proved the existence and the 

uniqueness of fixed point, now we will study the stability of coupled fixed point iterative procedures. 

Let {(𝑠𝑛, 𝑡𝑛)} ⊂ 𝑋2,   𝛿𝑛 = 𝑑(𝑞𝑛+1, 𝑇(𝑞𝑛, 𝑟𝑛)),    𝛾𝑛 = 𝑑(𝑟𝑛+1, 𝑇(𝑟𝑛, 𝑞𝑛)). Assuming also that 

lim
𝑛→∞

𝛿𝑛 = lim
𝑛→∞

𝛾𝑛 = 0, 

in order to establish that 
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lim
𝑛→∞

𝑞𝑛 = 𝑠∗ 𝑎𝑛𝑑 lim
𝑛→∞

𝑟𝑛 = 𝑡∗. 

Therefore, using (𝜅, 𝜇) −contraction in condition (1), we have 

𝑑(𝑞𝑛+1, 𝑠∗) ≤ 𝑑(𝑞𝑛+1, 𝑇(𝑞𝑛, 𝑟𝑛)) + 𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑠∗) 

= 𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑇(𝑠∗, 𝑡∗)) + 𝛿𝑛 

≤ 𝜅𝑑(𝑞𝑛, 𝑠∗) + 𝜇𝑑(𝑟𝑛, 𝑡∗) + 𝛿𝑛(14) 

𝑑(𝑟𝑛+1, 𝑡∗) ≤ 𝑑(𝑟𝑛+1, 𝑇(𝑟𝑛, 𝑞𝑛)) + 𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑡∗) 

= 𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑇(𝑡∗, 𝑠∗)) + 𝛾𝑛 

≤ 𝜅𝑑(𝑟𝑛, 𝑡∗) + 𝜇𝑑(𝑞𝑛, 𝑠∗) + 𝛾𝑛,                                           (15) 
From (14) and (15), we have 

(
𝑑(𝑞𝑛+1, 𝑠∗)

𝑑(𝑟𝑛+1, 𝑡∗)
) ≤ (

𝜅 𝜇
𝜇 𝜅) ∙ (

𝑑(𝑞𝑛, 𝑠∗)

𝑑(𝑟𝑛, 𝑡∗)
) + (

𝛿𝑛

𝛾𝑛
) 

We denote 𝐴 ≔ (
𝜅 𝜇
𝜇 𝜅), where 0 ≤  𝜅 + 𝜇 < 1, from (1). 

On applying Lemma 2, we need that 𝐴𝑛 → 0 as 𝑛 → ∞.By a way of simplification, we write 

𝐴 ≔ (
𝑎1 𝑏1

𝑐1 𝑑1
) 

where 

𝑎1 + 𝑏1 = 𝑐1 + 𝑑1 = 𝜅 + 𝜇 < 1. 

Then, 

𝐴2 = (
𝜅 𝜇
𝜇 𝜅) ∙ (

𝜅 𝜇
𝜇 𝜅) 

= (
𝜅2 + 𝜇2 2𝜅𝜇

2𝜅𝜇 𝜅2 + 𝜇2) ≔ (
𝑎2 𝑏2

𝑐2 𝑑2
) 

where 

𝑎2 + 𝑏2 = 𝑐2 + 𝑑2 = 𝜅2 + 𝜇2 + 2𝜅𝜇 = (𝜅 + 𝜇)2 < 𝜅 + 𝜇 < 1 

Now, on proving by induction that 

𝐴𝑛 = (
𝑎𝑛 𝑏𝑛

𝑐𝑛 𝑑𝑛
), 

where 

𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 + 𝑑𝑛 = (𝜅 + 𝜇)𝑛 < 𝜅 + 𝜇 < 1.                                        (16) 

If we assume that (16) is true for 𝑛, then 

𝐴𝑛+1 = (
𝑎𝑛 𝑏𝑛

𝑐𝑛 𝑑𝑛
) ∙ (

𝜅 𝜇
𝜇 𝜅) 

= (
 𝜅𝑎𝑛 + 𝜇𝑏𝑛  𝜇𝑎𝑛 + 𝜅𝑏𝑛

 𝜅𝑐𝑛 + 𝜇𝑑𝑛 𝜇𝑐𝑛 + 𝜅𝑑𝑛
), 
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we have 

𝑎𝑛+1 + 𝑏𝑛+1 = 𝜅𝑎𝑛 + 𝜇𝑏𝑛 + 𝜇𝑎𝑛 + 𝜅𝑏𝑛 

= (𝜅 + 𝜇)𝑎𝑛 + (𝜅 + 𝜇)𝑏𝑛 

= (𝜅 + 𝜇)(𝑎𝑛 + 𝑏𝑛) 

From (16), we have 

= (𝜅 + 𝜇)(𝜅 + 𝜇)𝑛 

= (𝜅 + 𝜇)𝑛+1 < 𝜅 + 𝜇 < 1 

Similarly, 

𝐶𝑛+1 + 𝑑𝑛+1 = (𝜅 + 𝜇)𝑛+1 < 𝜅 + 𝜇 < 1. 

Therefore, 

lim
𝑛→∞

𝐴𝑛 = 02 

Now, having satisfied the conditions of the hypothesis of Lemma 2, on applying we get 

lim
𝑛→∞

(
𝑞𝑛

𝑟𝑛
) = (

𝑠∗

𝑡∗), 

So, the coupled fixed-point iteration procedure defined by (13) is 𝑇 −stable. 

Corollary 1: 

Let (𝑋, ≤) be a partially ordered set. Suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) is a 

complete metric space. Let 𝑇: 𝑋2 → 𝑋 be a continuous mapping having a mixed monotone property on 𝑋. 

There exists ℎ ∈ [0,1), such that 𝑇 satisfies the following contraction condition. 

𝑑(𝑇(𝑠, 𝑡), 𝑇(𝑞, 𝑟)) ≤
ℎ

2
[𝑑(𝑠, 𝑞) + 𝑑(𝑡, 𝑟)],                                                 (17) 

for each 𝑠, 𝑡, 𝑞, 𝑟 ∈ 𝑋, with 𝑠 ≥ 𝑞 and 𝑡 ≤ 𝑟. 

If there exists 𝑠0, 𝑡0 ∈ 𝑋 such that 

𝑠0 ≤ 𝑇(𝑠0,𝑡0) 𝑎𝑛𝑑 𝑡0 ≥ 𝑇(𝑡0, 𝑠0) 

Then, there exist 𝑠∗, 𝑡∗ ∈ 𝑋 such that 

𝑠^ ∗= 𝑇(𝑠^ ∗, 𝑡^ ∗) 𝑎𝑛𝑑 𝑡^ ∗= 𝑇(𝑡^ ∗, 𝑠^ ∗). 

Assume that for every (𝑠, 𝑡), (𝑠1, 𝑡1) ∈ 𝑋2, then there exists (𝑞, 𝑟), ∈ 𝑋2 that can be compared to (𝑠, 𝑡) 

and (𝑠1, 𝑡1). For (𝑠0, 𝑡0) ∈ 𝑋2, let {(𝑠𝑛, 𝑡𝑛)} ⊂ 𝑋2 be a coupled fixed point iterative procedure defined by 

(13). Then, the coupled fixed-point iterative procedure is stable with respect to 𝑇. 

Proof: 
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On applying theorem 1, for 𝜅 = 𝜇 ≔
ℎ

2
.Let {(𝑠𝑛, 𝑡𝑛)} ⊂ 𝑋2,   𝛿𝑛 = 𝑑(𝑞𝑛+1, 𝑇(𝑞𝑛, 𝑟𝑛)),    𝛾𝑛 =

𝑑(𝑟𝑛+1, 𝑇(𝑟𝑛, 𝑞𝑛)). Assuming also that lim
𝑛→∞

𝛿𝑛 = lim
𝑛→∞

𝛾𝑛 = 0, to be able to establish that lim
𝑛→∞

𝑞𝑛 =

𝑠∗ 𝑎𝑛𝑑 lim
𝑛→∞

𝑟𝑛 = 𝑡∗. 

Therefore, using contraction in condition (17), we have 

𝑑(𝑞𝑛+1, 𝑠∗) ≤ 𝑑(𝑞𝑛+1, 𝑇(𝑞𝑛, 𝑟𝑛)) + 𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑠∗) 

= 𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑇(𝑠∗, 𝑡∗)) + 𝛿𝑛 

≤
ℎ

2
𝑑(𝑞𝑛, 𝑠∗) +

ℎ

2
𝑑(𝑟𝑛, 𝑡∗) + 𝛿𝑛(18) 

𝑑(𝑟𝑛+1, 𝑡∗) ≤ 𝑑(𝑟𝑛+1, 𝑇(𝑟𝑛, 𝑞𝑛)) + 𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑡∗) 

= 𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑇(𝑡∗, 𝑠∗)) + 𝛾𝑛 

≤
ℎ

2
𝑑(𝑟𝑛, 𝑡∗) +

ℎ

2
𝑑(𝑞𝑛, 𝑠∗) + 𝛾𝑛,                                         (19) 

From (18) and (19), we have 

(
𝑑(𝑞𝑛+1, 𝑠∗)

𝑑(𝑟𝑛+1, 𝑡∗)
) ≤ (

ℎ

2

ℎ

2

ℎ

2

ℎ

2

) ∙ (
𝑑(𝑞𝑛, 𝑠∗)

𝑑(𝑟𝑛, 𝑡∗)
) + (

𝛿𝑛

𝛾𝑛
) 

We denote 𝐴 ≔ (
ℎ

2
ℎ
2

ℎ
2

ℎ
2

), where 0 ≤
ℎ

2
+

ℎ

2
= ℎ < 1, 

On applying Lemma 2, we need that 𝐴𝑛 → 0, as 𝑛 → ∞.By simplification, we write 

𝐴 ≔ (
𝑎1 𝑏1

𝑐1 𝑑1
) 

where 

𝑎1 + 𝑏1 = 𝑐1 + 𝑑1 =
ℎ

2
+

ℎ

2
= ℎ < 1. 

Then, 

𝐴2 = (

ℎ

2

ℎ

2

ℎ

2

ℎ

2

) ∙ (

ℎ

2

ℎ

2

ℎ

2

ℎ

2

) 

                 = (

ℎ2

2

ℎ2

2

ℎ2

2

ℎ2

2

) ≔ (
𝑎2 𝑏2

𝑐2 𝑑2
) 

𝑎2 + 𝑏2 = 𝑐2 + 𝑑2 =
ℎ2

2
+

ℎ2

2
= ℎ2 < ℎ < 1.                     

Then, 

𝐴3 = 𝐴2 ∙ 𝐴 

= (

ℎ2

2

ℎ2

2

ℎ2

2

ℎ2

2

) ∙ (

ℎ

2

ℎ

2

ℎ

2

ℎ

2

) 



183 
 

       = (

ℎ3

2

ℎ3

2

ℎ3

2

ℎ3

2

) ≔ (
𝑎3 𝑏3

𝑐3 𝑑3
) 

where, 

𝑎3 + 𝑏3 = 𝑐3 + 𝑑3 =
ℎ3

2
+

ℎ3

2
= ℎ3 < ℎ2 < ℎ < 1 

Now, on proving by induction that 

𝐴𝑛 = (
𝑎𝑛 𝑏𝑛

𝑐𝑛 𝑑𝑛
) 

where, 

𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 + 𝑑𝑛 =
ℎ𝑛

2
+

ℎ𝑛

2
= ℎ𝑛 < ℎ𝑛−1 < ⋯ < ℎ2 < ℎ < 1                             (20) 

If we assume that (20) is true for 𝑛, then 

𝐴𝑛 = (
𝑎𝑛 𝑏𝑛

𝑐𝑛 𝑑𝑛
) ∙ (

ℎ

2

ℎ

2

ℎ

2

ℎ

2

) 

= (

ℎ𝑎𝑛

2
+

ℎ𝑏𝑛

2

ℎ𝑎𝑛

2
+

ℎ𝑏𝑛

2
ℎ𝑐𝑛

2
+

ℎ𝑑𝑛

2

ℎ𝑐𝑛

2
+

ℎ𝑑𝑛

2

) ≔ (
𝑎𝑛+1 𝑏𝑛+1

𝑐𝑛+1 𝑑𝑛+1
) 

we have 

𝑎𝑛+1 + 𝑏𝑛+1 =
ℎ𝑎𝑛

2
+

ℎ𝑏𝑛

2
+

ℎ𝑎𝑛

2
+

ℎ𝑏𝑛

2
 

= ℎ𝑎𝑛 + ℎ𝑏𝑛 

 = ℎ(𝑎𝑛 + 𝑏𝑛) 

From (20), we have 

= ℎ(ℎ𝑛) = ℎ𝑛+1 < ⋯ < ℎ < 1 

Similarly, 

𝑐𝑛+1 + 𝑑𝑛+1 = ℎ(ℎ𝑛) = ℎ𝑛+1 < ⋯ < ℎ < 1 

Therefore, 

lim
𝑛→∞

𝐴𝑛 = 02 

Now, having satisfied the conditions of the hypothesis of Lemma 2, we apply to get 

lim
𝑛→∞

(
𝑞𝑛

𝑟𝑛
) = (

𝑠∗

𝑡∗), 

Then, the coupled fixed-point iteration procedure is stable with respect to 𝑇. 
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Theorem 2: Let (𝑋, ≤) be a partially ordered set. Suppose that there exists a metric 𝑑 on 𝑋 such that 

(𝑋, 𝑑) is a complete metric space. Let 𝑇: 𝑋2 → 𝑋 be a continuous mapping having a mixed monotone 

property on 𝑋 satisfying (2) and (3). 

If there exists 𝑠0, 𝑡0 ∈ 𝑋 such that 

𝑠0 ≤ 𝑇(𝑠0,𝑡0) 𝑎𝑛𝑑 𝑡0 ≥ 𝑇(𝑡0, 𝑠0), 

then, there exist 𝑠∗, 𝑡∗ ∈ 𝑋 such that 

𝑠^ ∗= 𝑇(𝑠^ ∗, 𝑡^ ∗) 𝑎𝑛𝑑 𝑡^ ∗= 𝑇(𝑡^ ∗, 𝑠^ ∗). 

Assume that for every (𝑠, 𝑡), (𝑠1, 𝑡1) ∈ 𝑋2, then there exists (𝑞, 𝑟), ∈ 𝑋2 that can be compared to (𝑠, 𝑡) 

and (𝑠1, 𝑡1). For (𝑠0, 𝑡0) ∈ 𝑋2, let {(𝑠𝑛, 𝑡𝑛)} ⊂ 𝑋2 be a coupled fixed point iterative procedure defined by 

(13). Then, the coupled fixed-point iterative procedure is stable with respect to 𝑇. 

Proof: 

Let {(𝑠𝑛, 𝑡𝑛)} ⊂ 𝑋2,   𝛿𝑛 = 𝑑(𝑞𝑛+1, 𝑇(𝑞𝑛, 𝑟𝑛)),    𝛾𝑛 = 𝑑(𝑟𝑛+1, 𝑇(𝑟𝑛, 𝑞𝑛)). Assuming that lim
𝑛→∞

𝛿𝑛 =

lim
𝑛→∞

𝛾𝑛 = 0, in order to establish that lim
𝑛→∞

𝑞𝑛 = 𝑠∗ 𝑎𝑛𝑑 lim
𝑛→∞

𝑟𝑛 = 𝑡∗. 

Therefore, using contraction condition (2), we have 

𝑑(𝑞𝑛+1, 𝑠∗) ≤ 𝑑(𝑞𝑛+1, 𝑇(𝑞𝑛 , 𝑟𝑛)) + 𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑠∗) 

= 𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑇(𝑠·, 𝑡·)) + 𝛿𝑛 

≤ 𝛼1𝑑(𝑇(𝑠∗, 𝑡∗), 𝑠∗) + 𝛽1𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑞𝑛) + 𝛿𝑛 

≤ 𝛼1𝑑(𝑠∗, 𝑠∗) + 𝛽1𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑞𝑛+1) + 𝛽1𝑑(𝑞𝑛+1, 𝑠∗) + 𝛽1𝑑(𝑠∗, 𝑞𝑛) + 𝛿𝑛 

= 𝛼1𝑑(𝑠∗, 𝑠∗) + 𝛽1𝑑(𝑞𝑛+1, 𝑠∗) + 𝛽1𝑑(𝑠∗, 𝑞𝑛) + 𝛽1𝛿𝑛 + 𝛿𝑛 

= 𝛼1𝑑(𝑠∗, 𝑠∗) + 𝛽1𝑑(𝑞𝑛+1, 𝑠∗) + 𝛽1𝑑(𝑠∗, 𝑞𝑛) + (𝛽1 + 1)𝛿𝑛 

𝑑(𝑞𝑛+1, 𝑠∗) − 𝛽1𝑑(𝑞𝑛+1, 𝑠∗) = 𝛼1𝑑(𝑠∗, 𝑠∗) + 𝛽1𝑑(𝑠∗, 𝑞𝑛) + (𝛽1 + 1)𝛿𝑛 

(1 − 𝛽1)𝑑(𝑞𝑛+1, 𝑠∗) = 𝛽1𝑑(𝑠∗, 𝑞𝑛) + (𝛽1 + 1)𝛿𝑛 + 𝛼1𝑑(𝑠∗, 𝑠∗) 

Hence, 

(1 − 𝛽1)𝑑(𝑞𝑛+1, 𝑠∗) ≤ 𝛽1𝑑(𝑠∗, 𝑞𝑛) + 𝛿𝑛
′                                                   (21) 

where 

𝛿𝑛
′ ≔ (𝛽1 + 1)𝛿𝑛 + 𝛼1𝑑(𝑠∗, 𝑠∗). 

On applying Lemma 1 on (21), we have 

𝑑(𝑞𝑛+1, 𝑠∗) ≤
𝛽1

(1 − 𝛽1)
𝑑(𝑠·, 𝑞𝑛) +

𝛿𝑛
′

(1 − 𝛽1)
, 

for 
𝛽1

(1−𝛽1)
∈ [0,1), we obtain that lim

𝑛→∞
𝑞𝑛 = 𝑠∗. 

Similarly, on using the contraction condition (3), we obtain 

𝑑(𝑟𝑛+1, 𝑡∗) ≤ 𝑑(𝑟𝑛+1, 𝑇(𝑟𝑛, 𝑞𝑛)) + 𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑡∗) 

= 𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑇(𝑡∗, 𝑠∗)) + 𝛾𝑛 

≤ 𝛼2𝑑(𝑇(𝑡∗, 𝑠∗), 𝑡∗) + 𝛽2𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑟𝑛) + 𝛾𝑛 
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≤ 𝛼2𝑑(𝑡∗, 𝑡∗) + 𝛽2𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑟𝑛+1) + 𝛽2𝑑(𝑟𝑛+1, 𝑡∗) + 𝛽2𝑑(𝑡∗, 𝑟𝑛) + 𝛾𝑛 

= 𝛼2𝑑(𝑡∗, 𝑡∗) + 𝛽2𝑑(𝑟𝑛+1, 𝑡∗) + 𝛽2𝑑(𝑡∗, 𝑟𝑛) + 𝛽2𝛾𝑛 + 𝛾𝑛 

= 𝛼2𝑑(𝑡∗, 𝑡∗) + 𝛽2𝑑(𝑟𝑛+1, 𝑡∗) + 𝛽2𝑑(𝑡∗, 𝑟𝑛) + (𝛽2 + 1)𝛾𝑛 

𝑑(𝑟𝑛+1, 𝑡∗) − 𝛽2𝑑(𝑟𝑛+1, 𝑡∗) = 𝛼2𝑑(𝑡∗, 𝑡∗) + 𝛽2𝑑(𝑡∗, 𝑟𝑛) + (𝛽2 + 1)𝛾𝑛 

(1 − 𝛽2)𝑑(𝑟𝑛+1, 𝑡∗) = 𝛽2𝑑(𝑡∗, 𝑟𝑛) + (𝛽2 + 1)𝛾𝑛 + 𝛼2𝑑(𝑡∗, 𝑡∗) 

Hence, 

(1 − 𝛽2)𝑑(𝑟𝑛+1, 𝑡∗) ≤ 𝛽2𝑑(𝑡∗, 𝑟𝑛) + 𝛾𝑛
′                                                   (22) 

where 

𝛾𝑛
′ ≔ (𝛽2 + 1)𝛾𝑛 + 𝛼2𝑑(𝑡∗, 𝑡∗). 

On applying Lemma 1 on (22), we have 

𝑑(𝑟𝑛+1, 𝑡∗) ≤
𝛽2

(1 − 𝛽2)
𝑑(𝑡∗, 𝑟𝑛) +

𝛾𝑛
′

(1 − 𝛽2)
, 

for 
𝛽2

(1−𝛽2)
∈ [0,1), we obtain that lim

𝑛→∞
𝑟𝑛 = 𝑡∗, 

which is the conclusion. 

Theorem 3: Let (𝑋, ≤) be a partially ordered set. Suppose that there exists a metric 𝑑 on 𝑋 such that 

(𝑋, 𝑑) is a complete metric space. Let 𝑇: 𝑋2 → 𝑋 be a continuous mapping having a mixed monotone 

property on 𝑋 satisfying (4) and (5). 

If there exists 𝑠0, 𝑡0 ∈ 𝑋 such that 

𝑠0 ≤ 𝑇(𝑠0,𝑡0) 𝑎𝑛𝑑 𝑡0 ≥ 𝑇(𝑡0, 𝑠0), 

then, there exists  𝑠∗, 𝑡∗ ∈ 𝑋 such that 

𝑠^ ∗= 𝑇(𝑠^ ∗, 𝑡^ ∗) 𝑎𝑛𝑑 𝑡^ ∗= 𝑇(𝑡^ ∗, 𝑠^ ∗). 

Assume that for every (𝑠, 𝑡), (𝑠1, 𝑡1) ∈ 𝑋2, then there exists (𝑞, 𝑟), ∈ 𝑋2 that can be compared to (𝑠, 𝑡) 

and (𝑠1, 𝑡1). For (𝑠0, 𝑡0) ∈ 𝑋2, let {(𝑠𝑛, 𝑡𝑛)} ⊂ 𝑋2 be a coupled fixed point iterative procedure defined by 

(13). Then, the coupled fixed-point iterative procedure is stable with respect to 𝑇. 

Proof 

Let {(𝑠𝑛, 𝑡𝑛)}𝑛=0
∞ ⊂ 𝑋2,   𝛿𝑛 = 𝑑(𝑞𝑛+1, 𝑇(𝑞𝑛, 𝑟𝑛)),    𝛾𝑛 = 𝑑(𝑟𝑛+1, 𝑇(𝑟𝑛, 𝑞𝑛)). Assume also that lim

𝑛→∞
𝛿𝑛 =

lim
𝑛→∞

𝛾𝑛 = 0, to be able to establish that lim
𝑛→∞

𝑞𝑛 = 𝑠∗and lim
𝑛→∞

𝑟𝑛 = 𝑡∗. 

Therefore, using contraction condition (4), we obtain 

𝑑(𝑞𝑛+1, 𝑠∗) ≤ 𝑑(𝑞𝑛+1, 𝑇(𝑞𝑛, 𝑟𝑛)) + 𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑠∗) 

= 𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑇(𝑠∗, 𝑡∗)) + 𝛿𝑛 

≤ 𝛼1𝑑(𝑇(𝑠∗, 𝑡∗), 𝑞𝑛) + 𝛽1𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑠∗) + 𝛿𝑛 

              ≤ 𝛼1𝑑(𝑞𝑛, 𝑠∗) + 𝛽1𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑞𝑛) + 𝛽1𝑑(𝑞𝑛, 𝑠∗) + 𝛿𝑛 

              = 𝛼1𝑑(𝑞𝑛, 𝑠∗) + 𝛽1𝑑(𝑞𝑛, 𝑠∗) + 𝛽1𝑑(𝑇(𝑞𝑛, 𝑟𝑛), 𝑞𝑛) + 𝛿𝑛 

= (𝛼1 + 𝛽1)𝑑(𝑞𝑛, 𝑠∗) + 𝛽1𝛿𝑛−1 + 𝛿𝑛.                   
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Hence, passing it to limit and applying Lemma 1 for ℎ ≔ 𝛼1 + 𝛽1 ∈ [0,1) and for 𝛿𝑛
′ ≔ 𝛿𝑛 + 𝛽1𝛿𝑛−1 →

0, we have that lim
𝑛→∞

𝑞𝑛 = 𝑠∗. 

Similarly, using contraction condition (5), we obtain 

𝑑(𝑟𝑛+1, 𝑡∗) ≤ 𝑑(𝑟𝑛+1, 𝑇(𝑟𝑛, 𝑞𝑛)) + 𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑡∗) 

= 𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑇(𝑡∗, 𝑠∗)) + 𝛾𝑛 

≤ 𝛼2𝑑(𝑇(𝑡∗, 𝑠∗), 𝑟𝑛) + 𝛽2𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑡∗) + 𝛾𝑛 

         ≤ 𝛼2𝑑(𝑟𝑛, 𝑡∗) + 𝛽2𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑟𝑛) + 𝛽2𝑑(𝑟𝑛, 𝑡∗) + 𝛾𝑛 

         = 𝛼2𝑑(𝑟𝑛, 𝑡∗) + 𝛽2𝑑(𝑟𝑛, 𝑡∗) + 𝛽2𝑑(𝑇(𝑟𝑛, 𝑞𝑛), 𝑟𝑛) + 𝛾𝑛 

= (𝛼2 + 𝛽2)𝑑(𝑟𝑛, 𝑡∗) + 𝛾𝑛 + 𝛽2𝛾𝑛−1 

So, applying limit and using Lemma 1, for ℎ ≔ 𝛼2 + 𝛽2 ∈ [0,1) and for 𝛾𝑛
′ ≔ 𝛾𝑛 + 𝛽2𝛾𝑛−1 → 0, we 

obtain that lim
𝑛→∞

𝑟𝑛 = 𝑡∗, which is the conclusion. 
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